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Chart I 

c/'i-Butadiene 
k) = 1B1 -154.390 au 

1B2 -154.421 au 
i„> = IA1 -154.489 au 
I0) = IA1 -154.766 au 

rra».s-Butadiene 
'k) = 1Au -154.395 au 

1B11 -154.397 au 
',,) = 1A8 -154.569 au 
;o> = 1A1. -154.722 au 

In order to relate the selection rules to the conrotatory 
and disrotatory Woodward-Hoffmann displacements 
we focus our attention on the possible twist of the CH2 

terminal groups. 
In the case of c/s-butadiene the symmetries of the 

vibrations associated with the 1Bi and 1B2 excited states 
are respectively Bx and B2. The Bi vibration does not 
provide any twist of the CH2 groups whereas the B2 

one displays a disrotatory behavior (Figure 4a). This 
photochemical disrotatory motion is in accord with the 
Woodward-Hoffmann rules and produces cyclobutene. 

In the ?ra«5-butadiene case the vibrational symmetries 
associated with the 1B11 and 1A1, excited states are re­
spectively Bu and Au . Here again Bu does not involve 
any twisting motion whereas the A11 vibration is a dis­
rotatory one (including also the in-phase out-of-plane 
motion of the central hydrogen atoms (Figure 4b). 
These two motions distort the highest occupied M O 
in such a way that the increased overlaps (arrows in 
Figure 5) lead to the formation of bicyclo[1.1.0]butane 
(2). 

This reaction may be a slow concerted one or a two-
step reaction involving the intermediate I.26 
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(26) R. Srinivasan, /. Amer. Chem. Soc, 90, 4498 (1968). 
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Abstract: Pattern recognition is a newly developing branch of artificial intelligence that shows a great deal of 
promise in providing a generalized approach to solutions of a large class of data analysis problems in experimental 
chemistry. A general statement of the problem is: can an obscure property of a collection of objects (elements, 
compounds, mixtures, etc.) be detected and/or predicted using indirect measurements made on the objects? One 
particular method within the realm of pattern recognition, the learning machine, has been successfully applied to 
spectroscopic data for direct detection of molecular structural units. This paper introduces pattern recognition 
in a much broader scope. Using a synthetic data base and a data base of chemical interest, the major approaches 
within pattern recognition are examined. One method representing each approach is applied to the two funda­
mentally different data sets, first to compare the results, but also to illustrate the far-reaching problem solving capa­
bility. 

A large amount of experimental science deals with 
predicting properties of objects which are not 

directly measurable. In chemistry, the objects range 
from pure elements or compounds to complicated 
industrial and natural products. The properties can 
be fundamental, such as atomic or molecular structure, 
or less fundamental, such as reactivity, permeability, 
absorptivity, etc. All too often, these properties are 
not directly measurable and must be found using 
experimental measurements which are known to be 
related, in some way, to the sought-for property. In 
some cases a theoretical relationship between measure­
ments and the property is used. A few simple but 
common examples serve to clarify this point. Emission 
spectrometry does not provide a direct measure of 
atomic composition (few methods do) but rather a 
measure of the wavelengths of light emitted when a 
sample is " p u m p e d " with energy. The mathematics 
of atomic theory provide the connection between com­
binations of various wavelengths and the structure of 

(1) Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

atoms. Along the same lines, nmr spectrometry does 
not provide a direct measure of molecular structure 
but rather a measure of how isotopes are perturbed 
under various experimental conditions. Group theory 
provides the connection between nmr parameters and 
molecular structure. 

To proceed, let us consider a less fundamental 
property of chemical compounds, reactivity. We will 
assume that one is faced with the problem of predicting 
the reactivity within a very large number of samples 
(compounds or mixtures of compounds) . There are 
three methods of determining whether or not two 
compounds will react in a prescribed manner. The 
first and most obvious is the direct determination 
method consisting of adding one to the other under the 
desired conditions of temperature and pressure. The 
next method, herein called the theoretical method, is to 
study bonding possibilities of the molecules taking into 
consideration such things as orbital symmetry, steric 
hindrance, etc. Although these two methods are the 
most desirable, they may not be feasible. Direct 
methods may be prohibitively expensive, time con-
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suming, or dangerous. A theoretical approach is best 
in these cases but may be impossible since the proposed 
reactants might be complicated mixtures of unknown 
composition (i.e., natural products). The scientist is 
usually forced into using a third method: the educated 
guess. This approach should not be thought of as 
being unscientific. The human (especially the scientist) 
is very efficient at learning from experience and is 
capable of using a high-order logic in drawing con­
clusions. Very little research has been done to system­
atize this third process in such a way as to provide 
general solutions to problems. A general statement 
of the problem is: given a set of objects and a list of 
measurements made on these objects, is it possible to 
find and/or predict a property of the objects that is not 
directly measurable but is known to be related to the 
measurement via some unknown relationship ? 

A new field has recently emerged from applied 
mathematics which shows a great deal of promise in 
solving this class of problems. It is called pattern 
recognition2-4 and employs some very unique tech­
niques of problem solving. Pattern recognition tech­
niques were originally used to solve data processing 
problems in a number of diverse areas. These areas 
include handwritten and printed alphanumeric char­
acter recognition, weather prediction, medical diagnosis, 
speech analysis, and many others. Recently, a number 
of papers have entered the chemical literature describing 
applications of one particular pattern recognition 
method, the linear learning machine, to the analysis of 
various types of spectroscopic data.5-10 The titles of 
these papers have included such names as "Pattern 
Recognition" and "Machine Intelligence" but the 
papers are really applications of nonparametric learning 
machines employing feedback learning and a threshold 
log unit.11 

This paper introduces the field of pattern recognition 
to the chemical literature in a much broader scope. It 
can be used as an introduction to the field in that it 
touches on the main branches of this new discipline 
by using one method from each branch to analyze 
chemical data. No attempt will be made to introduce 
the reader to the broad field of artificial intelligence. 
Suffice to say that pattern recognition is a subset of 
artificial intelligence. Excellent material is available to 
those who wish to learn about the other branches of 
artificial intelligence. •2_ u 

(2) (a) J. M. Mendel and K. S. Fu, Ed., "Adaptive Learning and 
Pattern Recognition Systems," Academic Press, New York, N. Y., 
1970; (b) K. S. Fu, "Sequential Methods in Pattern Recognition and 
Machine Learning," Academic Press, New York, N. Y., 1968. 

(3) S. Watanabe, Ed., "Methodologies of Pattern Recognition," 
Academic Press, New York, N. Y., 1969. 

(4) G. S. Sebcstyen, "Decision-Making Processes in Pattern Recogni­
tion," MacMillian, New York, N. Y., 1962. 

(5) P. C. Jurs, B. R. Kowalski, and T. L. Isenhour, Anal. Chem., 41, 
21(1969). 

(6) B. R. Kowalski, P. C. Jurs, T. L. Isenhour, and C. N. Reilley, 
ibid., 41, 1945(1969). 

(7) B. R. Kowalski and C. A. Reilly, J. Phys. Chem., 75,1402 (1971). 
(8) L. E. Wangen and T. L. Isenhour, Anal. Chem., 42, 737(1970). 
(9) L. B. Sybrandt and S. P. Perone, ibid., 43, 382 (1971). 
(10) T. L. Isenhour and P. C. Jurs, ibid., 43, 2OA (1971); also see 

references within. 
(11) N. J. Nilsson, "Learning Machines," McGraw-Hill, New York, 

N. Y., 1965. 
(12) E. A. Feigenbaum and J. Feldman, Ed., "Computers and 

Thought," McGraw-Hill, New York, N. Y., 1963. 
(13) B. Meltzer and D. Michie, Ed., "Machine Intelligence 4," 

American Elsevier, New York, N. Y., 1969. 
(14) M. Minsky, Proc. IRE, 49, 8 (1961). 
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Figure 1. Functional breakdown of pattern recognition techniques. 

Pattern Recognition Approach 

Figure 1 shows a functional breakdown of the field 
of pattern recognition. For most chemical appli­
cations, the underlying statistics of the properties or 
classes to be found are usually not known. Parametric 
methods of pattern recognition assume that probability 
density functions are known or can be estimated. 
Bayes strategies15 are employed in the learning and 
decision process. While this branch of pattern recog­
nition might possibly be very fruitful in the future, the 
problems associated with practical applications are 
many. Therefore, this paper will be concerned with 
the nonparametric branch of pattern recognition which 
makes no assumption about the underlying statistical 
distribution of the data. 

As stated earlier, the goal is to recognize an obscure 
property in a collection of objects from indirect mea­
surements made on the objects. Two questions must 
be answered at the outset. Unfortunately they are 
interrelated. (1) What must be learned from the 
objects ? (2) Are the data (measurements) in the correct 
form? These questions lead to the first branching 
under nonparametric pattern recognition (Figure 1). 

Preprocessing is numerically operating on the data 
(measurements) in order to change the representation 
of the information contained in the data. Learning 
and classification proceed once the transformation is 
completed and lead directly to the desired results. 
To illustrate the use of the measurements a geometric 
description of pattern recognition will be used. 

Consider the objects as points in an n-dimensional 
space, where n is equal to the number of measurements 
made on each object. Of course, the same measure­
ments must be made on each object. The measure­
ments are the coordinates of each point in n space. The 
distance between two points in the n space, an excellent 
measure of their "likeness," is the simple Euclidean 
distance. (There are other types of distances de­
pending on the chosen metric, and hence other types of 
similarity measures, but they will not be discussed here.) 
It is assumed that nearness in space between two points 
is a good measure of similarity between the corre­
sponding objects and that a sufficient estimate of the 

(15) T. W. Anderson, "An Introduction to Multivariate Statistical 
Analysis," Wiley, New York, N. Y„ 1958, p 130. 
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similarity between object X, and X ; is 

d<, = (̂ E (x« - xjky) (i) 

where the summation is over the measurements. 
Actually, dtj is a reciprocal similarity measure be­

cause objects are more alike as d{J goes to zero. To 
remedy this, a similarity measure is defined as 

StJ = 1 - dtJ/MAX(dtj) (2) 

where MAX(Cf,,) is the largest interpoint distance. For 
this function, the most unlike objects give StJ = 0 
and identical objects give S 0 = 1. Similarity measures 
are an extremely important part of pattern recognition. 

Classification and learning methods operate directly 
on the n space in either of two modes. The first has 
been termed supervised learning. Supervised learning 
means that some of the points in the n space are 
"tagged" with a known classification (these points 
comprise a training set) and the primary objectives are 
to develop a rule which classifies these points correctly 
and then apply the same rule for classification of un­
known points. The second mode is called unsuper­
vised learning. Here, the objective is to find realistic 
densities or clusters of points in n space which reflect 
the possible existence of meaningful interrelationships. 
Thus in this mode, there is no training set. 

Both of these modes, but especially the latter, are 
dependent on the absolute magnitudes of the measure­
ments. If, for example, in a two-dimensional case, one 
of the measurements is bond length (in A) and the other 
is boiling point (in 0C), the points may have a small 
variance in the axis of the former measurement and a 
large variance in the latter. It is obvious that scaling 
is necessary. Scaling is but one type of preprocessing 
that might be necessary to produce realistic results in 
the classification and learning stage of a pattern recog­
nition study. 

Since visual examination of points in n space (when 
greater than three dimensional) is not possible, com­
puters are used to analyze the data. Fortunately, the 
concepts of Euclidean geometry (distance, angles, etc.) 
hold true in higher dimensional spaces. Besides 
implementing the preprocessing methods mentioned 
above, the computer can be used to (1) generate an 
approximation of the points (n space) in a two-di­
mensional space so that visual examination is possible, 
(2) find clusters or densities of points, and (3) classify 
unknown points according to their nearness (in some 
sense) to known points. These computer tasks will be 
discussed in detail individually in later sections of this 
paper. Discussions of methodology will be aided by 
two example data sets. One set consists of artifically 
generated points and most clearly shows how the 
methods work. The second data set is of chemical 
interest. 

Data 

Artificial data, herein referred to as set 1, were gen­
erated by computer and contained 75 points in three-
dimensional space. The data can be thought of as 
coming from 75 objects where three measurements 
(X, Y, and Z) were made on each object. Actually, 
set 1 was drawn from three randomly generated 
Gaussian distributions. The three distributions were 

displaced by adding constants to the coordinates in order 
to make them well separated. Twenty of the points 
from each of the three distributions have been labeled 
as "knowns" leaving a total of 15 unknowns. The 
problem in the first case is twofold: first to detect the 
presence of these three groups and, second, to classify 
unknown points into one of these three groups. It 
should be remembered that a three-dimensional prob­
lem was chosen purely for demonstration. The 
methods to be discussed are capable of handling more 
difficult problems. 

There was a great deal of difficulty deciding on the 
second data set, set 2. Requirements were that the 
problem should use data of general interest to chemists, 
not have a trivial solution, but at the same time not be 
overly complicated. The most important requirement 
was that the problem, and the data used in solving the 
problem, should be used only as an example and not 
in any way shadow the true goal of this paper which is 
to introduce the field of pattern recognition to chemical 
data processing. It would be difficult to find anything 
more basic to chemistry than the chemical elements. 
It was therefore decided to use the elements as the 
objects for the study. The problem is hypothetical 
in nature but uses real data that were readily available. 

The "Periodic Table of the Elements" published by 
Sargent-Welch Co.16 contains a wealth of chemical 
information. Among the properties listed in this 
periodic table is whether the representative oxide 
(higher valence) of each element is acidic, amphoteric, 
or basic. For the pattern recognition problem, six 
properties of the elements were used: (1) most im­
portant valence, (2) melting point, (3) covalent radius, 
(4) ionic radius, (5) electronegativity, and (6) AH of 
fusion. All of the properties could not be found for all 
of the elements so some elements were eliminated. 
Also, the inert gases were not used for obvious reasons 
and hydrogen was eliminated because its oxide (H2O) 
was presumably the solvent system used to determine 
the given acidity and basicity. In all there were 68 
elements with 27 in the "basic" class, 21 in the "acidic" 
class, and 20 amphoterics. The objectives of the 
problem were to see whether the acidic class could be 
separated from the basic class using the six properties 
and, if so, to decide how to classify the amphoterics. 
It should be mentioned that none of the properties could 
effect the separations when used alone. Table I lists 
the elements used and their identification numbers. 

It is important that the reader see beyond these 
applications and discover the relevance of what is 
presented here to the wide variety of possible appli­
cations in chemical research. 

Preprocessing 
As was mentioned earlier, preprocessing involves 

actually changing the structure of points in the n space. 
Even though there are several preprocessing methods 
to choose from,17-19 this branch of pattern recognition 
has not received much attention until recently and 

(16) "Periodic Table of the Elements," Sargent-Welch Scientific Co., 
Skokie, 111., 1968. 

(17) K. S. Fu, P. J. Min, and T. J. Li, IEEE Trans. Syst. Sci. Cyber-
«e/i«, SSC-6, 33 (1970). 

(18) M. T>. Levine, Proc. IEEE, 57, 1391 (1969). 
(19) Institute of Electrical and Electronics Engineers Conference 

Record of the Symposium on Feature Extraction and Selection in Pat­
tern Recognition, Argonne National Laboratory, Oct 1970. 
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Table I. Identification Numbers of the Elements Used 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

Lithium 
Boron 
Nitrogen 
Sodium 
Magnesium 
Phosphorus 
Sulfur 
Chlorine 
Potassium 
Calcium 
Scandium 
Chromium 
Manganese 
Arsenic 
Selenium 
Bromine 
Rubidium 
Strontium 
Yttrium 
Niobium 
Molybdenum 
Ruthenium 
Cadmium 

24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 

Antimony 
Tellurium 
Iodine 
Cesium 
Barium 
Lanthanum 
Cerium 
Praseodymium 
Neodymium 
Samarium 
Europium 
Gadolinium 
Terbium 
Dysprosium 
Erbium 
Thulium 
Lutetium 
Tantalum 
Tungsten 
Rhenium 
Osmium 
Mercury 
Thallium 

47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
68. 

Bismuth 
Thorium 
Beryllium 
Aluminum 
Silicon 
Titanium 
Vanadium 
Iron 
Cobalt 
Zinc 
Gallium 
Germanium 
Zirconium 
Rhodium 
Silver 
Indium 
Tin 
Hafnium 
Gold 
Lead 
Polonium 
Uranium 

therefore a general theoretical approach is nonexistent. 
It is hoped that this situation will soon be remedied. 

It is of the utmost importance that the ratio (R) of the 
number of objects to the number of measurements used 
for learning and classification be as large as possible. 
Sammon, et a/.,20 have found for the two class problem 
that the error rate is a monotonically decreasing func­
tion of this ratio. They found, for R < 2, that geo­
metrically perfect, but possibly meaningless, results 
could almost always be obtained on design training 
data sets. Ratios of R > 3 were found to be tolerable 
and ratios of R > 10 were most desirable. In the 
present work, R = 20 for set 1 and R = 8 for set 2. 

When an unsupervised approach is used, almost no 
preprocessing is justified. If the classifications are not 
known a priori, then very little can be done to improve 
classification performance. About the only action that 
can be justified is scaling. When measurements of 
different units are compared, a weighting of the mea­
surements with the largest absolute values is inadver­
tently applied. The two-dimensional example cited 
above (bond length and boiling point) is just such a 
case. To scale the measurements so that they each 
have an equal weight and therefore an equal effect on 
the application, autoscaling is applied. The measure­
ments are scaled so that they each have a mean of zero 
and unit variance. The fcth coordinate of the /th 
point then becomes 

Y'ik = (Yik - Y1)Ia, (3) 

where 

F, = l/N E Ya (4) 
t = i 

and 

<x,2 = E (Yik - Yky (5) 
t = 1 

The second kind of preprocessing that was used in this 
study is simply a weighting of the variables; this can 

(20) Proceedings of the 1970 Institute of Electrical and Electronic 
Engineers, Symposium on Adaptive Processes, p IX.2.1, University of 
Texas at Austin, Dec 1970. 

only be used for supervised learning. Since the classi­
fications are known, each coordinate can be weighted 
according to its relative importance in effecting a 
separation of the known classes. One example of this 
technique, classification weighting, is the ratio of the 
interclass variance to the intraclass variance. It is 
applied to the coordinates after they have been auto-
scaled. 

The new value is 

Y'a = 4>kYik (6) 

where 

b-^ab 

** = a
 VP Y * ( 7 ) 

c 

and 

*ab* = E ( > V - Y^y (8) 
i . ; ' 

Pa is the simple probability of a point being in class a 
and is estimated from the data set (number in class/ 
number in data set). Xab

k is the interclass variance 
and the summation is over all two-point combinations 
not in the same class. X0/ is the intraclass variance 
and the summation is over all two point combinations 
where both points are in the same class. <f>k is calcu­
lated for each of the measurements. Larger values of 
4>k indicate the relative importance of the &th variable. 
Set 2 was autoscaled and weighted, but set 1 underwent 
no preprocessing. 

It is convenient to refer to the coordinates of the new 
n space generated by preprocessing as features. These 
features can be, and often are, quite different from the 
original measurements. They may be linear or non­
linear (exponential, etc) combinations of some or all of 
the measurements, depending on the particular pre­
processing method used. 

The above discussion pertains to what may be called 
multisource data (Figure 1) meaning that the measure­
ments are made using a variety of instruments. Single-
source data (Figure 1) are here defined as coming from 
the same instrument. Spectroscopy is a good example 
of the latter because by digitizing a spectrum, several 
measurements are obtained from one spectrum. The 
early application of learning machines to mass,5 in­
frared,6 nmr,7 and 7-ray spectroscopy8 serves as 
examples of the application of one type of pattern 
recognition to single-source data. Preprocessing in 
single-source studies such as these are many and have 
included transformations such as autocorrelation7 and 
Fourier.21 These transformations may be necessary 
to achieve the goals of the particular study. This 
subject will be treated in greater detail in a subsequent 
paper. 

Visual Display by Mapping 

It would be erroneous to infer that pattern recognition 
removes the scientist from data analysis. Man-
machine interaction is currently in vogue in chemistry 
and other fields for a good reason: man is the best 
pattern recognizer known today. The difficulty comes 
when the measurements and/or the objects are many. 

(21) L. E. Wangen, N. M. Frew, T. L. Isenhour, and P. C. Jurs, Appl. 
Spectrosc.,25, 203 (1971). 
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Figure 2. NIm of three-class synthetic data from three-space to 
two-space. 
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Figure 4. Acids (C) and bases (O) nlm from six-space to two-
space. 

2 

22 

CO 

(3 « 

S2 
12 

54 

55 I 

n 
S3 M 

85 57 
25 47 

10 

34 M 

« IS 26 

Figure 3. Nlm of acid-base data from six-space to two-space. 

At this point computer techniques should be used but 
carefully supervised by the scientist. 

It is important that the scientist get some feeling 
for the structure (again using the geometrical concepts 
discussed earlier) of the data. Obviously he cannot 
interpret the features in n space (n > 3), but the com­
puter can be used to reduce the data to a more familiar 
two- or three-dimensional space. Clearly, this re­
duction can be done only approximately. There are 
a number of ways of performing such a task but prob­
ably the best is nonlinear mapping22 (nlm), a technique 
which seeks to conserve interpoint distances. Every 

(22) J. W. Sammon, Jr., IEEETrans Comput., C-18, 401 (1969). 

point (/) in n space has a distance to every other point 
(j) defined as in eq 1. These distances can be calculated 
once and henceforth considered as constants, dtj*. 
The ideal reduction in two dimensions would have 

d * [(X,- X1Y + (Y1 - y,)»]v> = </u (9) 

for all pairs QJ). Since this cannot be done exactly, 
an error, E, is defined 

1 ^ (d„* i £ 
dtj* i>j 

dtly 
d ••* 
U1J 

(10) 

Examination of this function shows that it is nonlinear 
in 2 N unknowns (N = number of points), the un­
knowns being the (X, Y) coordinates of each point. 
Nlm is implemented by minimizing the error function 
using a nonlinear minimization method. This mini­
mization is complicated but the resultant maps preserve 
the structure of data rather well making nlm an ex­
tremely valuable technique. For this paper, the mini­
mization was done by the conjugate gradient method.23 

Two additional and important points should be 
mentioned here. First, any distance measure can be 
used for dtJ* and dv as long as it is monotonic and the 
derivatives of eq 10 exist. Second, the mapping can be 
from n space to m space where n > m. A two-di­
mensional map is most useful here but graphic display 
systems can easily handle three dimensions. 

Figure 2 shows the results of mapping set 1 to two-
space. This mapping was relatively simple because the 
original dimension was only three. The three dis­
tributions are well preserved in the mapping and the 
correct classification of unknown points (circles) would 
be easily done using only the map. 

Figure 3 shows the nlm of set 2, where none of the 
points are classified. There is no obvious clustering, 
which is not unreasonable because there are various 

(23) E. Polak, "Computational Methods in Optimization," Academic 
Press, New York, N. Y., 1971, p 53. 
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Figure 5. Acids (C), bases (O), and amphoterics nlm from six-
space to two-space. 

degrees of acidity and basicity. Set 2 is fundamentally 
very different from set 1 because set 1 contains distinct 
classes and set 2 does not. Figure 4 shows the same 
map as Figure 3 with only acids and bases shown. 
These two pseudoclasses are separated in Figure 4, 
whereas it is not possible to separate them using any 
one measurement. The map shows that the two 
classes can be separated using indirect measurements. 
Obviously, some of the measurements are more im­
portant than others, but it is the multivariant approach 
that allows separation. 

There are excellent methods for elimination of 
redundancies among measurements and even ranking 
the measurements according to their relative impor­
tance, but they will not be discussed in this paper. 
Also, it is clear that an acid-base separation is not the 
only information in Figure 4. The variance per­
pendicular to the axis of separation is actually greater 
than the variance along the axis of separation. How­
ever, the significance of the perpendicular axis is not 
known. Figure 5 is the same as Figure 4 but includes 
the unknowns (amphoterics) to be classified. The 
reader can proceed to classify the unknowns, but should 
remember that the map is only an approximation of 
an n space; therefore, unknowns near the two-class in­
terface should be classified by other methods. 

Clustering 

Methods of finding clusters in multidimensional data 
have been used for some time.2425 For this paper, a 
conceptually simple but effective clustering technique 
called hierarchical Q-mode clustering (hier) was used. 
Hier uses the similarity measurements from eq 2 in 
forming a similarity matrix. The matrix is scanned for 
the largest value and the two points producing this 
value are summed. Thenceforth, the two points are 

(24) G. H. Ball, Data Analysis in the Social Sciences, Proceedings of 
the Fall Joint Computer Conference, Las Vegas, Nev,, 1965. 

(25) R. R. Sokal and P. H. Sneath, "Principles of Numerical Tax­
onomy," W. H. Freeman, San Francisco, Calif., 1963. 

Figure 6. Four Q-mode clusters (~ 
as a display. 

acid, O = base) using nlm 

considered as one (a center of gravity) to calculate a 
new and smaller similarity matrix. This process is 
continued until all of the points are in one cluster. 
Center of gravity points, which represent more than 
one point in n space, are given more weight in order to 
reflect the size of the cluster represented by the center 
of gravity. The operator has three choices for ob­
taining clusters from hier. First, the desired number 
of clusters can be specified and the process will stop 
when a similarity measure produces a specified number 
of clusters. Second, a predetermined value can be 
set and when the similarity level reaches that value, the 
process stops and the clusters at that level are given. 
Third, the rate of change of the similarity level needed 
to produce the next clustering can be monitored and the 
process stopped when a change of, say, 5% occurs. 
This third method was used on the two data sets in this 
paper. Hier stopped at a similarity of 0.83 when 
applied to set 1. That is, the similarity started at 1.0 
and changed slowly as new clusters formed. At 0.83, 
there were three clusters but the next step produced a 
large jump to 0.30, which is far greater than the specified 
5% change. Further clustering was discontinued. It 
is not surprising that all 75 of the points fell correctly 
into one of the three classes. Again, set 1 is a trivial 
example, but if clustering does exist, even in much 
higher dimensional spaces, hier will find the correct 
clusters. 

Using hier on set 2, again in the third mode as 
detailed above, gave the results shown in Figure 6. 
The first jump greater than 5 % occurred when the 
similarity changed from 0.72 to 0.67. At 0.72, four 
clusters were formed. Figure 6 is the nlm map and 
is used instead of a table listing the elements in each 
cluster. It also shows a good "view" of the data 
structure because nlm preserves the global structure 
and hier preserves local structure. The two methods 
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Figure 7. Final classification (• = acid, O = base) using nlm 
as a display. 

used together as in Figure 6 are excellent for unsuper­
vised problems because they are complementary. 

As expected, the clustering is not as distinct for set 2 
as it is for set 1. Further clustering within the largest 
cluster, which is quite possible using hier, gave meaning­
less results because the clusters were not well separated. 
The three remaining clusters are reasonable when one 
considers their composition. 

Classification 

The most often encountered goal of a pattern recog­
nition application is classification. Using a collection 
of knowns and a classification rule, a set of unknowns 
is classified. Mapping techniques such as nlm can be 
used for this purpose, with the scientist performing the 
actual classification. Clustering techniques can be 
useful in classifying unknowns by either of two methods. 
As one example, hier was applied to both the knowns 
and unknowns for set 1 and set 2. In this way, an 
unknown can be assigned to the class that holds a 
majority of knowns within the cluster containing the 
unknowns. A second method is to apply hier only to 
the training set. After the clusters are found, their 
centers of gravity are calculated. To classify an un­
known, the cluster with the nearest center of gravity is 
found and the majority class is assigned to the unknown. 

These methods of classification are merely follow-up 
procedures to unsupervised learning. There are, how­
ever, several classification methods4'1126'27 that are 
used strictly for supervised learning. These methods 
operate on the assumption that the classes are known 
and proceed to classify unknowns into one of the 
classes. One of these methods has been used exten­
sively to analyze spectroscopic data. This method, a 
computerized learning machine,11 employs a feedback 
procedure to find a hyperplane that divides the n space 

(26) Y. Ho and A. K. Agrawala, IEEE Trans. Automat. Contr., 
AC-13, 676(1968). 

(27) G. Nagy, Proc. IEEE, 56, 836 (1968). 

into two regions. If the two classes are linearly 
separable,11 each region will contain one class. This 
method suffers from some unfortunate disadvantages, 
which are examined in a paper in preparation; there­
fore, it will not be discussed further here. As an 
alternative, the A>nearest-neighbor classification rule28 

(Arm) was used to classify the unknowns in set 1 and 
set 2. The characteristics of this method, which make 
it more desirable than the learning machine method, 
are beyond the scope of this paper. Suffice it to say 
that it is based on a firm statistical foundation and 
might possibly become the standard classification 
method by which all new and more sophisticated 
methods will bejudged. 

The AT-nearest-neighbor rule is computationally and 
conceptually quite simple. An unknown is classified 
by the majority rule of the A"-nearest knowns. In 
view of the relatively small data sets used in this paper 
and because a majority vote is easier when the number 
voting is odd, K selected for set 1 and set 2 was three. 
(At this point, note that all of the methods used in this 
paper work equally well for any number of classes.) 

When Arm was applied to set 1, all of the unknown 
points were classified correctly. Again, this is not a 
great surprise. When A"nn was applied to set 2, the 
unknowns (amphoterics) were classified as shown in 
Figure 7. The classification given to points 38, 57, 
and 63 clearly shows the danger of using only nlm for 
classification near the interface of two classes. (Local 
structure cannot be preserved exactly when mapping 
to a lower dimensional space.) It is rather difficult to 
"check" the results of the classifications made on the 
amphoteric oxides. Vanadium oxide is generally 
considered as being more acidic and lead oxide more 
basic but for many of the amphoterics, such as alumi­
num oxide, very little can be found on their preponder­
ance as acids or bases. 

Conclusion 

The expressed purpose of this paper is to provide a 
broad scope introduction of pattern recognition as a 
tool to be used in making a direct connection between 
chemical data and desired results. It is hoped that 
through the use of examples, a flavor of what can be 
done will be given to the reader and that the broad 
applicability will be recognized. Pattern recognition 
should not be viewed as an attempt to remove the 
scientist from the data analysis part of experimentation. 
Nor should it be thought of as a black box within the 
computer that gives a machine a high degree of in­
telligence. Rather it is a combination of tools that can 
efficiently handle the tedious task of data reduction. 

Most of the methods of pattern recognition are 
nicely suited to scientist supervision and interaction. 
Also, part of the power of pattern recognition to 
thoroughly extract information from a body of data is 
that the scientist can use more than one method for an 
application. In these cases, ultimate supervision is 
provided by the scientist who must decide whether or 
not the results "make sense" in the real world. 

In describing the various branches of pattern rec­
ognition several important points have deliberately 
been avoided in order to keep the size of the paper 

(28) T. M. Cover and P. E. Hart, IEEE Trans. Inform. Theory, IT-
13,21(1967). 
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manageable. Parametric methods were barely men­
tioned, the important preprocessing step was only 
lightly treated, and only one method for each approach 
was demonstrated. If sufficient interest is stimulated, 
these points will be treated in greater detail. 

I n a previous communication2 ab initio SCF and CI 
potential surfaces for the C4H6 isomers of cyclo-

butene and w-butadiene were reported with the aim of 
providing detailed information about the minimum 
energy path followed by these systems in a thermo-
chemically induced electrocyclic transformation. Ac­
cording to this study a partial opening of the cyclo-
butene ring occurs prior to any rotation of the methylene 
groups; at a certain separation of the carbon termini 
rotation becomes energetically likely and only after the 
complete rotation has occurred is further CC stretch to 
the m-butadiene product favored. 

The calculation of a reaction surface of this nature 
requires a sufficiently detailed examination of the energy 
dependence of each of the geometrical parameters. Be­
cause of the large number of these quantities, how­
ever, it becomes a matter of practical necessity, regard­
less of the method of calculation employed, to forego 
the complete optimization of each of these parameters 
and rather to assume certain fixed relationships for some 
of those species which do not appear to play a critical 
role in the process as a whole. Thus optimal values for 
the CH bond lengths and the HCH angles have been 
assumed in I, and C2 or Cs symmetry of the nuclear 
framework is maintained throughout. With these as­
sumptions the geometry search was then carried out in a 
four-dimensional space spanned respectively by the CC 
terminal bond distance R (see Figure 1), the CH2 

(1) (a) University of Nebraska; (b) Johannes Gutenberg Univer-
sitat. 

(2) K. Hsu, R. J. Buenker, and S. D. Peyerimhoff, / . Amer. Chem. 
Soc, 93, 2117(1971); hereafter referred to as I. 
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rotation angle 9(planar CH2 groups, 9 = 0°; perpendic­
ular, 9 = 90°), the CH2 flapping angle a, and a fourth 
parameter 7 ascribing a fixed relationship between the 
two distinct internal CC bond distances (double and 
single bonds in the end products). 

Perhaps the most tenuous of the aforementioned as­
sumptions is that at no point in the electrocyclic re­
action between cyclobutene and c/s-butadiene does out-
of-plane deformation of the carbon ring, as described 
by an angle <p (planar ring, <p = 0°), occur. The semi-
empirical valence bond calculations of van der Lugt and 
OosterhofF for the same systems, for example, have pre­
dicted that torsion of the ring does play an important 
role and optimal values of <p as high as 40° are calculated 
for small values of R (close to the cyclobutene structure). 
More recently ab initio calculations of Radom and Pople4 

and of Dumbacher6 have indicated that c/s-butadiene 
itself may favor as much as 20° torsion relative to the 
planar conformation. Furthermore, the results of van 
der Lugt and Oosterhoff indicate that torsion can have a 
major effect on the transformation mechanism itself. 
It therefore seems necessary to investigate the effects of 
out-of-plane ring deformation in the framework of ab 
initio SCF and CI calculations similar to those described 
in I to determine whether the proposed mechanism is 
affected by such considerations. In addition, explicit 
attention will be given to the HCC angle /3 since ex­
ploratory calculations have indicated that this parameter 

(3) W. Th. A. M. van der Lugt and L. J. Oosterhoff, ibid., 91, 6042 
(1969); also Chem. Commun., 1235 (1968). 

(4) L. Radom and J. A. Pople, J. Amer. Chem. Soc, 92, 4786 (1970). 
(5) B. Dumbacher, Ph.D. Thesis, Mainz, June 1970; also see Theor. 
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Abstract: Ab initio SCF and CI calculations are reported which consider the effects of ring torsion (out-of-plane 
deformations) upon the reaction mechanism of the thermochemically induced electrocyclic transformation between 
cyclobutene and butadiene. It is found that conformations with both CH2 groups perpendicular to the plane of 
the four carbons are strongly resistant to out-of-plane ring deformations but that structures with planar methylene 
groups are subject to a significant amount of such torsional displacements. The major effect of ring torsion upon 
the mechanism of this reaction is to decrease the CC distance R at which CH2 rotation becomes favored relative to 
the corresponding value for a constrained reaction path in which torsion is not allowed; nevertheless the main con­
clusion of previous calculations is left unaltered, namely, that the rotational phase of this process occurs over a very 
narrow range of R. The calculations also indicate that formation of /raws-butadiene, the ultimate product of the 
reaction, involves the cis isomer as an intermediate rather than direct conversion as a result of simultaneous CH2 
rotation and ring torsion. 
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